Telegram Group »
Indonesia »
Библиотека собеса по Data Science | вопросы с собеседований » Telegram Webview
Ключевой критерий — наличие
🔍 Хорошие кандидаты для мультизадачного обучения:
— Задачи, основанные на одинаковых
— Задачи, требующие похожего
— Задачи, где одна может
📌 Пример:
В NLP можно объединить задачи
🚫 Плохие кандидаты — риск негативного переноса:
— Задачи с разными типами
— Задачи с конфликтующими
На что ещё обратить внимание:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
🚨 Что на самом деле происходит с увольнениями в ИТ
Каждый день в чатах разработчиков появляются сообщения «ищу работу», «команду сократили», «проект закрыли». Но никто не говорит о причинах и масштабах катастрофы. Мы запустили большое исследование, чтобы раскрыть правду!
🎯 Что мы выясним:
→ Реальные причины увольнений
→ Сколько времени нужно на поиск работы
→ Самые безумные истории смены работы
Понимая реальную ситуацию, мы сможем принимать взвешенные решения о карьере и не попасться на удочку HR-сказок.
👉 Пройдите опрос за 3 минуты и помогите всему сообществу: https://clc.to/yJ5krg
Каждый день в чатах разработчиков появляются сообщения «ищу работу», «команду сократили», «проект закрыли». Но никто не говорит о причинах и масштабах катастрофы. Мы запустили большое исследование, чтобы раскрыть правду!
🎯 Что мы выясним:
→ Реальные причины увольнений
→ Сколько времени нужно на поиск работы
→ Самые безумные истории смены работы
Понимая реальную ситуацию, мы сможем принимать взвешенные решения о карьере и не попасться на удочку HR-сказок.
👉 Пройдите опрос за 3 минуты и помогите всему сообществу: https://clc.to/yJ5krg
1. Многоуровневая
Иерархические методы способны выявлять
2. Гибкость при выборе
В отличие от методов типа K-средних, где нужно заранее
3. Хороша для
Иерархическая кластеризация часто применяется в задачах, где важно понять
⚠️ Ограничения:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
Признаки, полученные с помощью автоэнкодера, обладают рядом преимуществ и недостатков по сравнению с традиционными методами:
🛠 По сравнению с вручную созданными признаками (handcrafted features)
Преимущества:
Недостатки:
📉 По сравнению с линейными методами, такими как PCA (анализ главных компонент)
Преимущества:
Недостатки:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Иерархическая кластеризация в наивной реализации плохо
🔧 Приближённые или гибридные методы:
⚙️ Оптимизированные структуры данных:
📉 Снижение размерности данных:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
🫣 Устали от HR-сказок про «дружный коллектив» и «печеньки в офисе»?
Давайте честно поговорим о том, что действительно происходит на IT-рынке. Не в розовых презентациях, а в реальной жизни разработчиков, тестировщиков, аналитиков и всех, кто живет кодом.
🧐 Мы проводим исследование, чтобы выяснить:
— Как часто мы прыгаем между компаниями (и почему)
— Какие красные флаги заставляют бежать без оглядки
— Где реально находят работу
— Что бесит в HR больше всего
— Сколько кругов собеседований — это уже перебор
Результаты покажут реальную картину рынка. Без приукрашиваний. Может, компании поймут, что нужно менять, а специалисты — куда двигаться дальше.
😈 Опрос займет 5 минут, но результаты будут работать на всех нас → https://clc.to/9aaXVg
Давайте честно поговорим о том, что действительно происходит на IT-рынке. Не в розовых презентациях, а в реальной жизни разработчиков, тестировщиков, аналитиков и всех, кто живет кодом.
🧐 Мы проводим исследование, чтобы выяснить:
— Как часто мы прыгаем между компаниями (и почему)
— Какие красные флаги заставляют бежать без оглядки
— Где реально находят работу
— Что бесит в HR больше всего
— Сколько кругов собеседований — это уже перебор
Результаты покажут реальную картину рынка. Без приукрашиваний. Может, компании поймут, что нужно менять, а специалисты — куда двигаться дальше.
😈 Опрос займет 5 минут, но результаты будут работать на всех нас → https://clc.to/9aaXVg
🎯 Если важна точность предсказаний:
—
—
🧠 Если важна интерпретируемость (например, в линейной регрессии):
—
—
1. Проверьте через
2. Используйте
3.
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
😵💫 Как правильно выбрать LLM для использования в агентских системах
Модели могут выдумывать факты, ссылаться на несуществующие источники и уверенно врать. Особенно часто это происходит при работе с редкими языками или специфическими тематиками.
Поэтому на первом занятии курса «AI-агенты для DS-специалистов» разберем, как с этим бороться. И это только первый из пяти уроков!
🔍 Выбор правильной модели
Не все LLM одинаково полезны. Обсудим квантизованные модели, instruct-версии и мультилингвальные решения. Узнаем, где больше галлюцинаций — в базовых моделях или после дообучения.
💰 Токенизация и стоимость
Разные языки «съедают» разное количество токенов. Покажем, как это влияет на цену API и почему русский текст может стоить дороже английского.
⚡️ Температура и Guardrails
Настройка temperature помогает контролировать креативность модели. А системы Guardrails — отсекать неподходящие ответы еще до генерации.
🧠 Память vs контекст
Казалось бы, зачем RAG, если есть модели с контекстом более 10М токенов? Но не все токены равнозначны. Разберем, когда внешние источники все еще нужны.
В конце создадим простых агентов на LangChain с подключением к внешним источникам и инструментам поиска — и у вас уже будет кейс по созданию собственного AI-агента.
👉 Присоединяйтесь к курсу — приятная цена действует до 14 июня!
Модели могут выдумывать факты, ссылаться на несуществующие источники и уверенно врать. Особенно часто это происходит при работе с редкими языками или специфическими тематиками.
Поэтому на первом занятии курса «AI-агенты для DS-специалистов» разберем, как с этим бороться. И это только первый из пяти уроков!
🔍 Выбор правильной модели
Не все LLM одинаково полезны. Обсудим квантизованные модели, instruct-версии и мультилингвальные решения. Узнаем, где больше галлюцинаций — в базовых моделях или после дообучения.
💰 Токенизация и стоимость
Разные языки «съедают» разное количество токенов. Покажем, как это влияет на цену API и почему русский текст может стоить дороже английского.
⚡️ Температура и Guardrails
Настройка temperature помогает контролировать креативность модели. А системы Guardrails — отсекать неподходящие ответы еще до генерации.
🧠 Память vs контекст
Казалось бы, зачем RAG, если есть модели с контекстом более 10М токенов? Но не все токены равнозначны. Разберем, когда внешние источники все еще нужны.
В конце создадим простых агентов на LangChain с подключением к внешним источникам и инструментам поиска — и у вас уже будет кейс по созданию собственного AI-агента.
👉 Присоединяйтесь к курсу — приятная цена действует до 14 июня!
Алгоритм EM (Expectation-Maximization) оценивает параметры модели в
🔍
— То есть, на этом этапе мы «угадываем», как могла бы распределиться скрытая структура данных при текущих параметрах модели.
🔧
—
🔁 Эти шаги повторяются
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
🥴 Средний разработчик меняет работу каждые 1,5 года
И это не потому, что мы такие непостоянные. Просто рынок показывает свое истинное лицо быстрее, чем успевают напечатать визитки.
Поэтому мы собираем инсайды от тех, кто находится в окопах digital-трансформации каждый день. От джуниоров, которые только въезжают в профессию, до сеньоров, повидавших всякого.
😳 О чем говорим откровенно:
— Job-hopping и что за этим стоит
— Red flags, которые мгновенно убивают мотивацию
— Реальные источники вакансий (не те, что рекламируют)
— Боль от общения с рекрутерами
— Сколько этапов отбора — норма, а сколько — издевательство
Когда мы объединим опыт сотен IT-специалистов, получится настоящая карта того, как устроена индустрия. Не по версии HR-отделов, а по версии тех, кто пишет код, тестирует продукты и двигает технологии вперед.
🚀 Участвовать в исследовании → https://clc.to/9aaXVg
И это не потому, что мы такие непостоянные. Просто рынок показывает свое истинное лицо быстрее, чем успевают напечатать визитки.
Поэтому мы собираем инсайды от тех, кто находится в окопах digital-трансформации каждый день. От джуниоров, которые только въезжают в профессию, до сеньоров, повидавших всякого.
😳 О чем говорим откровенно:
— Job-hopping и что за этим стоит
— Red flags, которые мгновенно убивают мотивацию
— Реальные источники вакансий (не те, что рекламируют)
— Боль от общения с рекрутерами
— Сколько этапов отбора — норма, а сколько — издевательство
Когда мы объединим опыт сотен IT-специалистов, получится настоящая карта того, как устроена индустрия. Не по версии HR-отделов, а по версии тех, кто пишет код, тестирует продукты и двигает технологии вперед.
🚀 Участвовать в исследовании → https://clc.to/9aaXVg
🤔 Можно ли задать одинаковые веса всем скрытым нейронам
На практике —почти никогда. В современных нейросетях это мешает обучению: все нейроны начинают вычислять одно и то же, градиенты одинаковы, и сеть не учится различать признаки. Такое поведение разрушает всю идею глубокого обучения.
Исключения есть:
•Смещения (bias) часто инициализируют нулём или 0.01
•Параметры нормализации (например, γ в BatchNorm) могут начинаться с 1
Но сами веса сети — всегда инициализируются случайно (например, Xavier или He), чтобы нарушить симметрию и позволить сети учиться.
Библиотека собеса по Data Science
На практике —
•
•
Библиотека собеса по Data Science
❗Вакансии «Библиотеки программиста»
Привет! Мы ищем контент-менеджеров, которые будут вести наши телеграм-каналы о разработке.
👾 Требования:
— знать принципы залетающего контента
— разбираться в темах, связанных с разработкой
Большим плюсом будет навык программирования на каких-либо языках.
✨ Условия:
— удаленка
— частичная занятость
— сдельная оплата в зависимости от количества задач
🔥 Оставляйте отклик, и мы свяжемся с вами: https://forms.gle/o4BZnsQ526JoqsCq9
Привет! Мы ищем контент-менеджеров, которые будут вести наши телеграм-каналы о разработке.
👾 Требования:
— знать принципы залетающего контента
— разбираться в темах, связанных с разработкой
Большим плюсом будет навык программирования на каких-либо языках.
✨ Условия:
— удаленка
— частичная занятость
— сдельная оплата в зависимости от количества задач
🔥 Оставляйте отклик, и мы свяжемся с вами: https://forms.gle/o4BZnsQ526JoqsCq9
🔹
🔹
📌 Пример:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
👉 Почему обычно применяют dropout к выходам нейронов, а не к весам
Потому что отключение выходов нейронов (стандартный dropout) полностью исключаетвклад этих нейронов в расчёты, что делает регуляризацию более надёжной и управляемой .
Альтернативный подход — занулять случайные веса (DropConnect) — может быть полезенв некоторых случаях, но он более сложен в реализации и менее распространён .
Dropoutпроще применить на практике и он стабильно работает во многих нейросетевых задачах.
Библиотека собеса по Data Science
Потому что отключение выходов нейронов (стандартный dropout) полностью исключает
Альтернативный подход — занулять случайные веса (DropConnect) — может быть полезен
Dropout
Библиотека собеса по Data Science
😡 А вас тоже бесят облачные сервисы?
Согласитесь, статус отношений с облаками — все сложно. Но что, если можно изменить правила игры?
Мы готовим нечто особенное в мире облачных технологий, но сначала хотим услышать правду от тех, кто реально работает с облаками каждый день.
❓Что мы хотим узнать:
— Для чего вы реально используете облако?
— Чего катастрофически не хватает прямо сейчас?
— Что бесит больше всего? (можно материться)
— Как выбираете провайдера — по цене или по любви?
— и тому подобное
По результатам опроса мы подготовим исследование без маркетингового мусора и вы узнаете, как обстоят дела у коллег.
⚡️Время на опрос: меньше, чем на кофе-брейк. Жмите → https://clc.to/nboYDA
Согласитесь, статус отношений с облаками — все сложно. Но что, если можно изменить правила игры?
Мы готовим нечто особенное в мире облачных технологий, но сначала хотим услышать правду от тех, кто реально работает с облаками каждый день.
❓Что мы хотим узнать:
— Для чего вы реально используете облако?
— Чего катастрофически не хватает прямо сейчас?
— Что бесит больше всего? (можно материться)
— Как выбираете провайдера — по цене или по любви?
— и тому подобное
По результатам опроса мы подготовим исследование без маркетингового мусора и вы узнаете, как обстоят дела у коллег.
⚡️Время на опрос: меньше, чем на кофе-брейк. Жмите → https://clc.to/nboYDA
Наивный Байес предполагает
Тем не менее, на практике Наивный Байес часто работает достаточно
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
😎 Пока все говорят об AI — мы учим строить системы, которые работают за вас
Что отличает топового дата-сайентиста от новичка? Умение не просто обучать модели, а создавать системы, которые принимают решения автономно. AI-агенты — это следующий уровень в DS, и мы запускаем курс по их разработке!
⚡️Если вы давно думали о прокачке скиллов или повышении грейда — сейчас самое время, потому что цена на курс вырастет уже 14 июня.
Спикер нашего нового курса — Никита Зелинский, Chief Data Scientist МТС. Его посты в канале @datarascals бьют в актуальные проблемы дата-спецов:
— Как за неделю окупить годовую зарплату одним COALESCE и получить свой quick win
— Разбор катастрофы с Precision@K или почему ваши метрики врут
— Комплексный гайд по антифроду
Поэтому на курсе «AI-агенты для DS» мы научим вас строить системы, которые не просто работают в демо, а выдерживают нагрузку реального бизнеса.
❗До повышения цены осталось 3 дня — забронируйте место сейчас
Что отличает топового дата-сайентиста от новичка? Умение не просто обучать модели, а создавать системы, которые принимают решения автономно. AI-агенты — это следующий уровень в DS, и мы запускаем курс по их разработке!
⚡️Если вы давно думали о прокачке скиллов или повышении грейда — сейчас самое время, потому что цена на курс вырастет уже 14 июня.
Спикер нашего нового курса — Никита Зелинский, Chief Data Scientist МТС. Его посты в канале @datarascals бьют в актуальные проблемы дата-спецов:
— Как за неделю окупить годовую зарплату одним COALESCE и получить свой quick win
— Разбор катастрофы с Precision@K или почему ваши метрики врут
— Комплексный гайд по антифроду
Поэтому на курсе «AI-агенты для DS» мы научим вас строить системы, которые не просто работают в демо, а выдерживают нагрузку реального бизнеса.
❗До повышения цены осталось 3 дня — забронируйте место сейчас
Логарифмирование признаков полезно, когда значения признаков
Такое преобразование:
Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM